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The introduction of autonomous technology to a wide range of naval applications brings great 
opportunities for improving operator safety and mission effectiveness. Advanced technologies 
such as artificial intelligence can reduce operator workload, decrease crew size, and increase 
capabilities. However, systems still require human input for asset allocation, mission planning, 
task prioritization, decision-making, ethical judgements, and other processes; even potentially 
“fully autonomous” systems require human inputs for mission command. Truly realizing the 
benefits of these advanced capabilities requires mature human engineering design 
approaches. We discuss a proven methodology for optimizing human-automation tasking 
allocation as well as strategies for integrating human and autonomous teammates to enhance 
mission success as part of a holistic systems engineering approach.  

INTRODUCTION 

Technology has developed to a point at which we can build more capability and functionality 
into systems than users can extract; the human is now the limiting factor in overall system 
performance. Advanced technologies, namely artificial intelligence (AI) and autonomy, are 
promising solutions to break this bottleneck and maximize mission effectiveness in complex, 
fast-moving situations. Complete automation is notnot always possible, practical, or desirable, 
especially in complex maritime systems, and so we adapt the implementation of this 
technology to the unique needs of each solution and mission. This requires two 
complementary approaches: (1) design effective AI/automation to reduce human-in-the-loop 
decision-making requirements and (2) apply proven human engineering principles to enhance 
human performance when interacting with these technologies. 

COLLABORATIVE AUTONOMY FRAMEWORK 

It is critical to recognize that no system is truly autonomous: even the most capable 
technologies require human interaction for command, control, critical decision-making, and 
overall mission integration. Figure 1 illustrates the spectrum of human/AI collaboration and 
the ways we can think about humans interacting with and leveraging advanced technology to 
achieve their mission. Increasing levels of automation offers more capabilities but with greater 
technology needs, risks, and design challenges. Human engineering is a critical part of 
addressing these risks and challenges to maximize the capability.  
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There are many opportunities for deploying autonomous technology across the naval domain, 
with large potential pay-off for greater mission effectiveness with fewer crew members, 
increased personnel safety, and decreased operator workload. However, an advanced 
technology not designed around the needs of the mission and user may not add value and 
may even negatively impact performance. Successful implementation of advanced technology 
requires deliberate design and integration to the needs of the user and mission, achieved 
through proven human engineering practice and a holistic systems engineering approach. 

System performance is the product 
of human performance and 
technology performance (See Figure 
2). The most advanced technology is 
useless if the human cannot use it 
effectively to achieve their mission. 
Monterey Technologies, Inc. applies 
human engineering as a scientific discipline to incorporate human needs and performance 
throughout system, software, process, and tool development. Fields within human 
engineering include human factors engineering, cognitive science, user-centered design, user 
experience (UX) research and design, and human systems integration. We primarily aim to 
understand requirements and inform design choices in the context of the human operators. 
Using our expertise in human psychology, cognition, behavior, and human-machine 
interaction, we design systems that augment and enhance human performance in an 
operational mission context. Technological advancements in AI and autonomous technology 
raise unique and interesting questions related to human-autonomy teaming, human trust in 
automation, and overall technological capabilities in the naval domain. Human engineering 
approaches identify limitations and concerns upfront, study mission and user needs, and 
design effective solutions to optimize the introduction of autonomous agents to a team while 
avoiding common risks and pitfalls. 

Many examples of bad design exist across domains, from distracting car infotainment systems 
to confusing signage to unintuitive control systems and alarm overload. Recent examples 
where failures can be traced directly to insufficient human engineering include the USS John 
McCain collision with Alnic MC (confusing helm interfaces), the crash of Air France Flight 447 
(overreliance on autopilot causing loss of situational awareness), and the survivability 
concerns of the US Navy’s Littoral Combat Ship (lacking analysis of manpower and personnel 
concept, optimistic reliance on key technology maturation). These examples highlight how 
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application of advanced technologies can make systems brittle when the automation fails or 
a situation arises which the automation cannot handle. Human-centered design approaches 
ensure that the user retains ultimate situational awareness and control while maximizing the 
capabilities of the technology to achieve their mission. 

HUMAN ENGINEERING METHODOLOGICAL APPROACH 

Human-autonomy teaming is a great use case for the naval setting because it can significantly 
enhance overall effectiveness while improving human safety and survivability. It is critical to 
understand optimal teaming prior to introducing an autonomous agent to a functional human 
team to ensure that the capability is improving mission effectiveness without causing undue 
burden on the human teammates. Here, we outline our proven human engineering 
methodological approach to analyze the mission goals, team tasking, and opportunities for 
autonomous agents that will have the biggest payoff. Characterizing the mission goals, 
understanding the specific tasks and cognitive functions involved, evaluating the human’s 
capabilities to perform those tasks, and understanding the expertise and complexity of the 
required decision making will reveal optimal opportunities for autonomous agents to insert 
seamlessly into the human team. We are intentionally agnostic to the exact application of this 
technology within the naval domain, as the approach can work across any mission-oriented 
domain, including command and control, mission planning, and autonomous vehicle 
technology.  

Step 1. Understand the Mission  

The first step to designing optimal systems for the warfighter is to fully understand the 
mission, context, and use cases. Needs vary both within and among missions and can be very 
wide-ranging. Working with subject matter experts to define the desired outcome of a mission 
is critical for having an accurate idea of what success looks like, prior to designing any assistive 
technology to support it.  

The primary human factors engineering approach to understanding mission requirements is 
to conduct Hierarchical Task Analyses (HTAs) to determine the goal-task hierarchy of a 
particular mission. HTAs have been used in many applications, including interface design, error 
prediction, workload analysis, team performance assessment, and training requirement 
identification (1). These approaches involve diving deep into the subject matter and fully 
understanding the goal and scope of the mission with a high level of detail. Data for these 
analyses may be gathered from subject matter expert (SME) discussions, decomposing 
available sources of information such as doctrine documents, and observation of mission 
activities. An HTA should include the overall goal, meaningful sub-goals, and then 
decomposition of those sub-goals further into operations, or actions made by an agent to 
achieve an associated goal. The output of an HTA may be a visual or textual model depicting 
the mission goals, sub-goals, operations, and contingencies. 

A skilled engineer maximizes the utility of the HTA process by effectively decomposing, 
generalizing, and capturing mission objectives. A common pitfall in this process is overreliance 
on how the mission is accomplished today, which unnecessarily constrains the problem and 
solution space; Henry Ford did not actually say “If I’d asked my customers what they wanted, 



they would’ve said a faster horse”, but the sentiment applies here. HTA focuses on deep 
understanding of the mission needs rather than the specific approach used currently. It is 
important to get this step right because the results will drive the rest of the effort; 
misunderstanding the mission will result in developing the right solution for the wrong 
mission. 

Step 2. Understand the System, Workflow, and User’s Tasks 

After identifying the mission goals and tasks, the next step is to understand the existing 
process for how the user performs the task. Workflow analyses provide a model of the phases, 
tasks, and sub-tasks of the actions being taken by each user using verb-noun format. Through 
detailed discussions with SMEs, user engagement, and observational process studies, 
workflow models provide an overview of a user’s tasking in a given domain along with pain 
points and shortcomings. For example, in the anti-submarine warfare domain, our detailed 
workflow analysis identified 9 phases of work for ASW mission planners: 0) Review Maintained 
Data Sources, 1) Review High-Level Directives, 2) Analyze Mission Tasking, 3) Determine 
Mission Requirements, 4) Establish Communications Flow, 5) Set Target List, 6) Create Tactical 
Plan, 7) Consolidate Water Space and Air Assignments, and 8) Complete Mission Planning 
Brief. Within each phase, tasks, such as (4.1) Set Flight Communications Flow, and sub-tasks, 
such as (4.1.1) Review Emissions Control Directives, are specified. Workflow models can also 
specify inputs and outputs, contingencies and alternate paths, and more, providing a flexible 
means for understanding and modeling a given process. They are especially helpful as a point 
of departure, indicating how the workflow will change with the implementation of the 
solution. Referring to these models throughout analyses and design activities ensures that the 
solution design is consistent with the requirements of the mission workflow and provides all 
members of the design team a shared reference point. 

Cognitive Task Analyses (CTAs) are another human engineering tool that more specifically 
describe the cognitive activities being performed by the human operator(s). Rather than 
focusing on the goals or physical tasks, CTA probes the cognitive processes underlying goal 
generation, decision-making, and judgments (2). Many specific CTA techniques exist, including 
Critical Decision Method, Critical Incident Techniques, Cognitive Work Analysis, Cognitive 
Walkthrough, and Applied Cognitive Task Analysis, but the common thread among techniques 
is the focus on determining the cognitive demands of performing the task (3). Though time 
intensive to perform, these methods can provide rich data about an operator’s cognitive 
processes during their mission tasking: is an operator “deciding”, “calculating”, or merely 
“inputting” information; how does their mental model match the system and support their 
activities; what are the likely sources of error and the impacts of mistakes. Certain cognitive 
tasks may be faster and more accurate for an autonomous agent to perform, and CTA can help 
to identify those opportunities.  

Critical to the often-collaborative naval domain, workflow analyses and CTAs should be 
applied to understanding team tasking and how each individual’s work and cognition 
contributes to the team’s goal. The scope of these analyses often depend on the scope of the 
project; an effort to make incremental improvements will have very different task analysis 
needs than a project to revolutionize the mission. Expert human engineering practitioners 



select the appropriate type(s) of workflow analyses and methods depending on the specific 
mission under study, while considering time and budget constraints. 

Step 3. Quantify Human Requirements and Performance 

Once the mission goal and operator tasking have been well defined and understood, the next 
step is to quantify the human requirements, including human performance challenges and 
bottlenecks in the process. Cognitive task analyses can help to characterize the type of 
cognitive activity occurring, but it must be quantified with metrics that can be measured and 
objectives that translate into mission performance. This is a critical step for establishing 
baseline understanding of how the current system works for the human operators in order to 
identify opportunities for introducing an autonomous teammate.  

At each stage of the workflow, human engineering practitioners use a selection of metrics to 
quantify the human factors during those tasks, which may include human workload, 
performance, situation awareness, or cognitive, physical, and emotional states. Most 
commonly, human performance is indexed by metrics related to task time, completion rates, 
and/or error rates, which are strongly affected by the user’s cognitive load, or the mental 
resources and effort required to perform a task(s) (4). As such, both performance metrics 
relevant to the task and measures of cognitive load should be acquired.  

Cognitive Load Metrics. Task characteristics (e.g., time pressure, novelty, feedback), 
environmental characteristics (e.g., noise, temperature), user “trait” characteristics (e.g., 
working memory capacity, visuo-spatial abilities), and user “state” characteristics (e.g., 
motivation, fatigue) can all impact the user’s cognitive load during task performance, 
implicating a wide range of factors. To accurately represent and consider these varying effects 
on cognitive load, it is advantageous to assess cognitive load in representative and ecologically 
valid experimental contexts. The following sections outline three common metric types for 
assessing cognitive load—behavioral, subjective, and physiological—and discuss their pros 
and cons.  

Behavioral metrics. Behavioral indices of cognitive load can include measurements of 
mental load, mental effort, or performance. Behavioral data can be gathered on a primary 
task, where longer task time or poorer performance can indicate higher cognitive load (but 
may also reflect other factors such as boredom). Behavioral data can also be gathered with 
dual-task-paradigms, where users perform a secondary (unrelated) task while concurrently 
performing the primary task of interest. To perform both tasks, the pool of cognitive resources 
must be divided (5). As such, the addition of the secondary task can be used to increase the 
cognitive load of the overall tasking. Comparing performance (on the primary task) in the 
single-task condition to the dual-task condition allows human engineering practitioners to 
examine effects of additional tasking on cognitive load. 

Alternatively, performance on the secondary task can itself be interpreted as an index of the 
mental effort in the primary task. Reaction time to a simple secondary stimulus-response task 
is a well-studied and reliable metric of cognitive load (6,7). Stimuli can be auditory, visual, or 
tactile and are meant to be unrelated to the primary task. A slower response or lower hit rate 
in the secondary task indicates a higher cognitive load of the primary task (i.e., the primary 



task required more cognitive resources at the time of response). This method has been used 
in many studies of driving in passenger vehicles (for a review, see (8)) and can be deployed in 
dynamic real-world environments. Data can be collected concurrently on multiple users and 
timestamped to allow for later evaluation against tasking at the time of the response. For 
naval operations, using dual-tasking paradigms to assess cognitive load for each operator 
during typical tasking would reveal the average cognitive load of the operation, the cognitive 
load of individual sub-tasks, and potentially, how the cognitive load changes based on teaming 
variations.  

Limitations of this method include the technology requirements for acquiring data and the 
concern that the measure is not continuous (stimuli occur at discrete instances). The task 
itself, while meant to measure cognitive load (mental effort) of the primary task, may also 
induce some cognitive load itself because it requires continual monitoring and response.  

Subjective metrics. Subjective measures include rating scales where users provide 
assessments of their cognitive load after they complete the task or sub-task. In general, rating 
scale methods have the benefit of being inexpensive and relatively easy to administer. There 
are many self-report scales of cognitive load and mental effort that range in complexity, time 
requirements, validity, and reliability (9). One of the most commonly used subjective 
measures of cognitive load is the NASA-Task Load Index (TLX; (10)) which includes six 
subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and 
Frustration. Measures such as the NASA-TLX are useful because they provide multi-
dimensional information about what type of load the user perceived to be the greatest. The 
NASA-TLX has been cited over 100,000 times across a wide range of domains and continues 
to be a well-respected and useful metric (11) that can now be administered on a tablet. This 
increases ease of use in dynamic real-world testing environments in the naval domain. 

Limitations of subjective methods largely arise from the fact that ratings are typically made 
after the task is complete. As such, scores may be subject to either forgetting and/or recency 
effects. Rating scales are also considered less reliable, with some data showing only weak 
correlations with other metrics (12,13). Self-report metrics also do not take into account time 
on task, or general individual differences in perceived mental effort. Given these limitations, 
rating scales should be included as additional, but not necessarily the only, measures in a 
study. 

Physiological metrics. Physiological measures of cognitive load are taken 
simultaneously during task performance and offer continuous assessment of cognitive load. A 
wide range of physiological and neuroimaging techniques have been employed in the 
measurement of cognitive load, including heartrate, heartrate variability, pupillometry, 
electrodermal measures (skin conductance), electroencephalography (EEG), functional 
Magnetic Resonance Imaging (fMRI), Position Emission Topography (PET), and functional 
Near-Infrared Spectroscopy (fNIRS), among others (5,13,14). Each technique offers a unique 
window into the human physiological and neurological activity underlying cognitive load, but 
also has its pros and cons in terms of administration and sensitivity.  



EEG is one metric that allows for continuous monitoring of brain electrical activity during a 
task, which allows researchers to measure fluctuations in cognitive load over time (see (15) 
for a review). While EEG has excellent sensitivity to timing, it has poor spatial resolution, 
making it difficult for researchers to map out exact locations of neural activity. However, the 
timing sensitivity of EEG allows researchers to identify points of maximum load during a task 
(16). It should be noted that EEG is sensitive to movement artifacts and has significant 
materials and setup requirements, making it impractical for many types of systems. 
Pupillometry is another commonly used physiological metric of cognitive load. Eye trackers 
can measure both eye movements and pupil size continually during a task. Many studies have 
shown that, in general, pupil size increases with higher cognitive load (e.g., (17)). Pupil size is 
also affected by light, age, and other psychological and physiological factors (such as 
emotional arousal). As such, using pupillometry as a metric of cognitive load requires 
controlled experimental design. The availability of affordable and portable eye trackers makes 
pupillometry a viable option for quantifying cognitive load in naval domains, though 
researchers must consider movement artifacts and light levels when designing a study with an 
eye tracker.  

Together, physiological measures can provide continuous, objective measures of cognitive 
load over time, but are often resource- and time-intensive. Incorporating physiological 
measures in a study also reduces the ecological validity, as tasks may need to be performed in 
simulators to allow for enough experimental control, and physiological measures sometimes 
require bulky or restrictive equipment that users may not typically wear during task 
performance. 

Human engineering practitioners are adept at selecting appropriate metrics given time, 
budget, and other project constraints. Data collection with these metrics should occur during 
normal operations, to the extent possible, to capture the range of contributors to cognitive 
load (environmental factors, stress, fatigue, etc., in addition to the load imposed by the task 
itself). Combined with results from cognitive task analyses, the cognitive load data could 
reveal those areas that have the largest negative effects for humans. High cognitive load and 
poor human performance can stem from multiple sources, including tasks that are too 
complicated, or conversely, those that are boring or require sustained attention and 
monitoring (18). Gathering extensive cognitive load data across example missions would 
highlight the human performance bottlenecks that could potentially be alleviated by an 
autonomous teammate. 

The most common error in this step is choosing the wrong metrics and measurement 
techniques, resulting in excellent data that are not useful in the design and evaluation process. 
Another common error is insisting on the most sophisticated data collection techniques when 
an easier and less expensive approach would be good enough, unnecessarily increasing cost 
and risk.  

Step 4. Identify Opportunities for Autonomous Teammates  

Those activities that have been quantified as being particularly difficult, boring, risky, or 
dangerous for the human operators may be good candidates for autonomous technology 



involvement. However, to determine who should perform a given task (a human operator or 
an autonomous agent) and at what level of autonomy, it is necessary to fully understand the 
complexity of the decision or task under question. Methods from the Naturalistic Decision 
Making subset of human engineering are appropriate for understanding decision making in 
complex environments (19). While many methods exist and overlap with cognitive task 
analysis approaches, the process generally involves identifying the decisions being made and 
analyzing the human expert’s process for making the decision. When analyzing the expert 
decision-making process, the human engineering practitioner should consider the ambiguity 
of the situation and the moralistic judgments required as well as the relative capabilities of 
the human and technology. 

Given this information, the design team should consider how to best position an autonomous 
agent within the team to maximize mission effectiveness. Possibilities for the role of an 
autonomous agent in a given task or stage of work are illustrated in Figure 1, with options 
ranging from simple decision aids to multiple types of human-automation teams to replacing 
the human completely. Taking a human engineering approach to understanding optimal 
human-autonomy teaming results in mission-oriented teams where tasking is mutually 
understood and trust is shared.  

A common mistake is not integrating human engineering into the system engineering effort 
or fully understanding technology capabilities and constraints when conducting human 
engineering analyses. This can result in designing a great solution which is not practical or 
possible to implement. Another mistake is automatically categorizing certain tasks as 
autonomous or human based on set criteria and heuristics. While it is true that, for example, 
technology is generally better at complex calculations and repetitive tasks, such 
oversimplification leads to solutions that reduce the operator’s situational awareness and 
understanding of automation performance. It’s important to purposefully design the 
workflow, integration, and interfaces to maximize overall system (human + technology) 
performance using the understanding developed through the human engineering effort. 

Step 5. Develop Concepts and Prototypes for Initial Test 

Naval domains that pursue autonomous technology should conduct prototype development 
and testing to ensure that mission effectiveness is improved and the human operators are 
supported. Iterative testing early and throughout the effort verifies and validates that the 
designed solution meets user and mission needs. A common failure is waiting until the 
solution is more mature to begin these efforts, at which point it becomes too expensive to 
correct any deficiencies identified. Human engineering approaches to gathering quantitative 
and qualitative usability data and user feedback should be incorporated early and often. 
Developing prototypes and conducting early-stage user testing of systems that include 
autonomous technology will minimize the risk of a flawed system that human operators do 
not understand or trust. Often this involves mockups of solutions that inexpensively 
demonstrate the concept prior to significant development effort. 

Step 6. Evaluate Impact on Mission and Team Performance 



Relying on the already-validated success metrics described in Step 3, we must measure the 
impact of the solution on the mission and the team performance. Comparing performance 
data and cognitive load with and without an autonomous teammate or other advanced 
technology capability provides a quantifiable metric of the impact of the technology. It is 
important to measure effects on both mission effectiveness and human operator metrics such 
as cognitive load, workload, performance, situation awareness, and possibly cognitive, 
physical, and emotional states. With any system involving autonomous technology, the design 
team should also measure human operator trust and acceptance of the autonomous 
technology (20). This is a critical step for ensuring that the system is useful and usable, and 
that mission effectiveness is improved. A common shortcoming is overlooking the impact of 
user trust in the solution; calibrated trust is important as under-trust means the user may not 
use the solution when it would be helpful and over-trust may cause users to over-rely on it to 
the detriment of mission success.  

Step 7. Develop Solutions with Ongoing, Iterative Verification and Validation 

Extensive research, evaluation, and validation of the mission requirements, goal hierarchy, 
workflow, cognitive tasking, and prototype concepts supports effective solution design. The 
impact continues into development with the human engineering team continuing to engage 
in the systems engineering effort and support implementation. The human engineering team 
can adapt solutions and interface design as necessary as the solution matures to ensure the 
actual implementation continues to support user and mission needs. User-centered, iterative 
design should be included throughout the development cycle to provide low-risk solutions for 
complex, critical naval applications. 

CONCLUSION 

The introduction of autonomous technology to a wide range of naval applications brings great 
opportunities for improving operator safety and mission effectiveness. Truly realizing the 
benefits of these advanced capabilities requires mature human engineering design 
approaches. Measuring and accounting for the human factors upon introduction of an 
automated system will ensure that automation is an additional asset, rather than a hindrance, 
to mission performance. 

System performance is the product of technology performance and human performance. 
Scientific approaches such as those applied by Monterey Technologies, Inc. are proven to 
improve system performance by meeting human needs and performance as part of a holistic 
systems engineering process. 
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